RTS/26/PT-1/PCM

JEE Main

Part Test-1

Physics, Chemistry & Mathematics

Time: 3 Hours Maximum Marks: 300

SYLLABUS

Physics	Proj	ential Mathematics, Units & Dimensions, Vectors, Error, Motion in One Dimension, Motion in Two Dimension, ectile Motion, Relative Motion, Circular Motion, Newton's Law of Motion, Friction, Work, Power & Energy, mentum, Center of Mass, Conservation of Energy & Momentum, Rigid Body Dynamics, Rotational Motion	
Chemistry		Atomic Structure, Periodic Table, Chemical Bonding, Basic Concepts of Chemistry, Redox and Volumetric Analysis, Chemical equilibrium	
Mathematics	: Qua	Quadratic Equation, Sets, Statistics, Trigonometric Ratio and Identities, Progressions, Permutation and Combination	

IMPORTANT INSTRUCTIONS

A. GENERAL:

- 1. Please read the instructions given for each question carefully and mark the correct answers against the question numbers on the answer sheet in the respective subjects.
- 2. The answer sheet, a machine readable Optical Mark Recognition (OMR) is provided separately.
- 3. Do not break the seal of the question-paper booklet before being instructed to do so by the invigilators.

B. MARKING SCHEME:

Each subject in this paper consists of following types of questions:-

SECTION - I

4. Multiple choice questions with **Single Correct Option**. **+4 Marks** will be awarded for each correct answer and **-1 Mark** for each wrong answer. **Zero marks** for unanswered.

SECTION - II

- 5. Numerical response type questions. +4 Marks will be awarded for each correct answer and -1 Mark for wrong answer in this section. The answer to each of the questions is to be given upto second decimal place(truncated/rounded-off); e.g. 6.25, 7.00, -0.33, -.30, 30.27, -127.30).
- 6. Answers to be written in clear and legible hand writing.

C. FILLING THE OMR:

- 7. Fill your Name, Roll No., Batch, Course and Centre of Examination in the blocks of OMR sheet and darken circle properly.
- 8. Use only HB pencil or blue/black pen (avoid gel pen) for darking the bubbles.

For example if only 'A' choice is correct then, the correct method for filling the bubbles is :

A B C I

the wrong method for filling the bubble are:

The answer of the questions in wrong or any other manner will be treated as wrong.

PHYSICS

Section-I: Questions 1 to 20 are multiple choice questions. Each question has four choices (1), (2), (3) and (4), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +4 marks will be given for each correct answer and -1 mark for each wrong answer.

Q.1 In a simple pendulum, the breaking strength of the string is double the weight of the bob. The bob is released from rest when the string is horizontal. The string breaks when it makes an angle θ with the vertical-

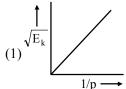
(1) $\theta = \cos^{-1}(1/3)$

(2) $\theta = 60^{\circ}$

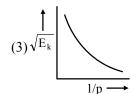
(3) $\theta = \cos^{-1}(2/3)$

(4) $\theta = 0^{\circ}$

Q.2 A particle of mass m is rotating in a circle of radius r with power $P = mK^2r^2t$. Find the centripetal acceleration -


(1) Kr^2t^2

(2) K^2r^2t


(3) K²rt²

 $(4) Kr^2t$

Q.3 The graph between $\sqrt{E_k}$ and 1/p is (E_k = kinetic energy and p = momentum)

 $(2)^{\sqrt{E_k}} \boxed{ 1/p \longrightarrow}$

 $(4)^{\sqrt{E_k}}$ $1/p \longrightarrow$

Q.4 In the adjoining diagram, the ball A is released from rest when the spring is at its natural length (neither stretched nor compressed). For the block B of mass M to leave contact with the ground at some time, the minimum mass of A must be -

खण्ड-I: प्रश्न 1 से 20 तक बहुविकल्पी प्रश्न हैं। प्रत्येक प्रश्न के चार विकल्प (1), (2), (3) तथा (4) हैं, जिनमें से केवल एक विकल्प सही है। OMR शीट में प्रश्न की प्रश्न संख्या के समक्ष अपना उत्तर अंकित कीजिये। प्रत्येक सही उत्तर के लिए +4 अंक दिये जायेंगे व प्रत्येक गलत उत्तर के लिए 1 अंक घटाया जायेगा।

Q.1 सरल लोलक में, डोरी की टूटने की सामर्थ्य गोलक के भार से दुगुनी है। जब डोरी क्षेतिज है गोलक विराम से छोड़ा गया है। डोरी टूटती है जब यह उर्ध्वाधर से θ कोण बनाती है -

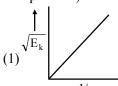
(1) $\theta = \cos^{-1}(1/3)$

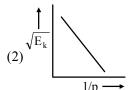
(2) $\theta = 60^{\circ}$

(3) $\theta = \cos^{-1}(2/3)$

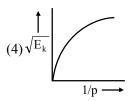
 $(4) \theta = 0^{\circ}$

Q.2 m द्रव्यमान का एक कण r त्रिज्या के वृत्त में शक्ति $P = mK^2r^2t$ से घूर्णन करता है। अभिकेन्द्रीय त्वरण ज्ञात कीजिये -

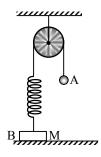

 $(1) Kr^2t^2$

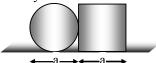

(2) K^2r^2t

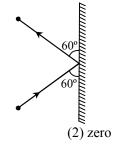
(3) K²rt²

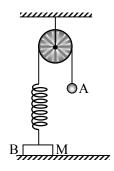

(4) Kr²t

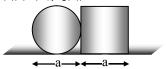
Q.3 $\sqrt{E_k}$ तथा 1/p के मध्य ग्राफ होगा (E_k = गतिज ऊर्जा तथा p = संवेग)

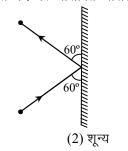



 $(3)^{\sqrt{E_k}} \boxed{ 1/p \longrightarrow}$


Q.4 नीचे दर्शाये चित्र में, गेंद A को विराम से छोड़ा गया है जब स्प्रिंग अपनी मूल लम्बाई (न तो खिंची हुई न ही संपीडीत है) में है। ब्लॉक B जिसका द्रव्यमान M है का किसी समय पर जमीन से सम्पर्क छोड़ देने के लिए A न्यूनतम द्रव्यमान अवश्य होगा -


- $(1) \ \frac{M}{2}$
- (2) M
- (3) 2M
- (4) A function of M and force constant k of spring
- Q.5 A circular plate of diameter d is kept in contact with a square plate of edge d as shown in figure. The density of the material and the thickness are same everywhere. The centre of mass of the composite system will be -


- (1) inside the circular plate
- (2) inside the square plate
- (3) at the point of contact
- (4) outside the system
- Q.6 A 3 kg ball strikes a heavy rigid wall with a speed of 10 m/s at an angle of 60°. It gets reflected with the same speed and angle as shown here. If the ball is in contact with the wall for 0.20 s, what is the average force exerted on the ball by the wall?


- (1) 150 N
- (3) $150\sqrt{3}$ N
- (4) 300 N

- (1) $\frac{M}{2}$
- (2) M
- (3) 2M
- (4) M तथा स्प्रिंग बल नियतांक k का एक फलन
- Q.5 d व्यास की एक वृतीय प्लेट को चित्रानुसार d भुजा की वर्गाकार प्लेट के सम्पर्क में रखा गया है। पदार्थ का घनत्व तथा मोटाई सभी जगह समान है। संयुक्त निकाय का द्रव्यमान केन्द्र होगा -

- (1) वृत्तीय प्लेट के अन्दर
- (2) वर्गाकार प्लेट के अन्दर
- (3) सम्पर्क बिन्दु पर
- (4) निकाय के बाहर
- Q.6 3 kg की एक गेंद एक भारी दृढ़ दीवार से 10 m/s की चाल से 60° के कोण पर टकराती है। यह समान चाल तथा कोण से परावर्तित होती है जैसा कि दर्शाया गया है। यदि गेंद 0.20 s के लिए दीवार के सम्पर्क में रहे, तो दीवार द्वारा गेंद पर आरोपित औसत बल क्या है ?

- (1) 150 N
- (3) $150\sqrt{3}$ N
- (4) 300 N

Space for rough work

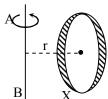
Q.7 Four particles each of mass 1 kg are kept in x-y plane at position (4m, 0), (-4m, 0), (0, 4m) and (0, -4m) respectively. Then coordinate of its centre of mass will be -

(1) (0,0) (2) (4,0) (3) (0,4) (4) (4,4)

Let F be a force acting on a particle having **Q.8** position vector \vec{r} . Let $\vec{\tau}$ be the torque of this force about the origin, then-

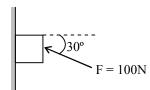
(1) $\vec{r} \cdot \vec{\tau} = 0$ and $\vec{F} \cdot \vec{\tau} = 0$

(2) $\vec{r} \cdot \vec{\tau} = 0$ and $\vec{F} \cdot \vec{\tau} \neq 0$


(3) $\vec{r} \cdot \vec{\tau} \neq 0$ and $\vec{F} \cdot \vec{\tau} \neq 0$

(4) $\vec{r} \cdot \vec{\tau} \neq 0$ and $\vec{F} \cdot \vec{\tau} \neq 0$

The radius of gyration of a solid sphere about a **Q.9** tangent is given by:


(1)
$$\sqrt{\frac{2}{5}}$$
 R (2) $\sqrt{\frac{2}{3}}$ R (3) $\sqrt{\frac{7}{5}}$ R (4) $\sqrt{\frac{5}{3}}$ R

Q.10 The moment of inertia of a ring X of mass M and radius r about the axis AB shown in figure is-

(1) Mr^2 (2) $2Mr^2$ (3) $3 Mr^2$ (4) $\frac{3}{2}Mr^2$

A force of 100 N is applied on a block of mass 0.11 3 kg as shown in figure. The coefficient of friction between the surface and block is 1/4. The friction force acting on the block is -

(1) 15 N downwards

(2) 25 N upwards

(3) 20 N downwards

(4) 20 N upwards

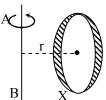
प्रत्येक 1 kg द्रव्यमान के चार कणों को x-y तल में **Q.7** क्रमशः रिथति (4m, 0), (-4m, 0), (0, 4m) तथा (0, -4m) पर रखा गया है, तब उसके द्रव्यमान केन्द्र के निर्देशांक होंगे -

(1) (0,0) (2) (4,0) (3) (0,4) (4) (4,4)

माना स्थिति सदिश रं वाले एक कण पर कार्यकारी बल 0.8 \vec{F} है। माना मूलबिन्दु के परितः इसका बलाघूर्ण $\vec{\tau}$ है,

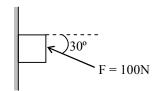
(1) $\vec{r} \cdot \vec{\tau} = 0$ तथा $\vec{F} \cdot \vec{\tau} = 0$

(2) $\vec{r} \cdot \vec{\tau} = 0$ तथा $\vec{F} \cdot \vec{\tau} \neq 0$


(3) $\vec{r} \cdot \vec{\tau} \neq 0$ तथा $\vec{F} \cdot \vec{\tau} \neq 0$

(4) $\vec{r} \cdot \vec{\tau} \neq 0$ तथा $\vec{F} \cdot \vec{\tau} \neq 0$

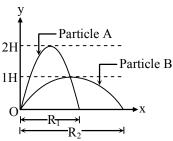
एक ठोस गोले की एक स्पर्शज्या के पारितः घुर्णन 0.9 त्रिज्या दी जाती है, के द्वारा:


(1)
$$\sqrt{\frac{2}{5}}$$
 R (2) $\sqrt{\frac{2}{3}}$ R (3) $\sqrt{\frac{7}{5}}$ R (4) $\sqrt{\frac{5}{3}}$ R

चित्र में दिखलाई गई AB अक्ष के सापेक्ष, M द्रव्यमान Q.10 और r त्रिज्या वाली वलय X का जडत्व आघूर्ण है -

(1) Mr^2 (2) $2Mr^2$ (3) $3 Mr^2$ (4) $\frac{3}{2} Mr^2$

100 N का एक बल चित्रानुसार 3 kg द्रव्यमान के एक Q.11 ब्लॉक पर लगाया जाता है। सतह तथा ब्लॉक के बीच घर्षण गुणांक 1/4 है। ब्लॉक पर कार्यकारी घर्षण बल है-

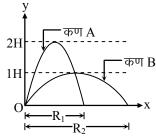


(1) 15 N नीचे की ओर (2) 25 N ऊपर की ओर

(3) 20 N नीचे की ओर (4) 20 N ऊपर की ओर

- A man of mass 90 kg is standing in an elevator Q.12 whose cable broke suddenly. If the elevator falls freely, the force exerted by the floor on the man is -
 - (1) 90 N
- (2) 90 g N
- (3) zero N
- (4) any negative value
- Q.13 Two masses 2 kg and 3 kg are attached to the ends of the string passed over a pulley fixed at the top. The tension and acceleration in the string in terms of 'g' are -

 - $(1)\left(\frac{7g}{8},\frac{g}{8}\right) \qquad (2)\left(\frac{21g}{8},\frac{g}{8}\right)$
 - $(3)\left(\frac{21g}{8},\frac{g}{5}\right) \qquad (4)\left(\frac{12g}{5},\frac{g}{5}\right)$
- Q.14 Two particles A and B are projected simultaneously from point O. Their maximum heights and ranges achieved are shown. Find correct option:


- (1) Necessarily $R_2 = 2R_1$
- (2) Ranges may be same
- (3) Ranges can't be same
- (4) None of the above
- Q.15 A particle of mass m is projected at an angle with horizontal with kinetic energy E. The potential energy at the top of its trajectory is $\frac{E}{2}$.

Find the range -

- (1) $\frac{E}{mg}$ (2) $\frac{E}{2mg}$ (3) $\frac{2E}{mg}$ (4) $\frac{E}{mg\sqrt{2}}$

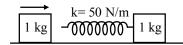
- 90 kg द्रव्यमान का एक व्यक्ति एक लिफ्ट में खड़ा है Q.12 जिसका तार अचानक टूट जाता है। यदि लिफ्ट स्वतन्त्रपूर्वक नीचे गिरती है तो फर्श द्वारा व्यक्ति पर लगाया गया बल है -
 - (1) 90 N
- (2) 90 g N
- (3) श्रून्य N
- (4) कोई भी ऋणात्मक मान
- 2 kg तथा 3 kg के दो द्रव्यमान एक डोरी के सिरों से 0.13 जुड़े है जो शीर्ष पर स्थिर एक घिरीं से गुजरती है। 'g' के पदों में डोरी में तनाव व त्वरण है -

 - $(1)\left(\frac{7g}{8},\frac{g}{8}\right) \qquad (2)\left(\frac{21g}{8},\frac{g}{8}\right)$
 - $(3) \left(\frac{2\lg}{8}, \frac{g}{5}\right) \qquad (4) \left(\frac{12g}{5}, \frac{g}{5}\right)$
- दो कण A तथा B एक साथ बिन्दु O से प्रक्षेपित किये 0.14 जाते है प्राप्त अधिकतम ऊँचाई तथा परास दर्शाई गई है सही विकल्प ज्ञात कीजिये:

- (1) आवश्यक रुप से $R_2 = 2R_1$ होगा
- (2) परास समान हो सकती है
- (3) परास समान नहीं हो सकती है
- (4) उपरोक्त में से कोई नहीं
- 0.15 \mathbf{m} द्रव्यमान का एक कण क्षेतिज के साथ $\mathbf{\theta}$ कोण पर E गतिज ऊर्जा के साथ प्रक्षेपित किया जाता है इसके पथ के उपरी सिरे पर स्थितिज ऊर्जा $\frac{E}{2}$ है परास ज्ञात कीजिये -

- (1) $\frac{E}{mg}$ (2) $\frac{E}{2mg}$ (3) $\frac{2E}{mg}$ (4) $\frac{E}{mg\sqrt{2}}$

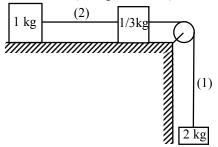
A particle moving along positive x-axis with a Q.16 speed 5 ms⁻¹ suddenly changes its direction along the positive y-axis with the same speed.


The change in velocity $\overrightarrow{\Delta v}$ of the particle is -

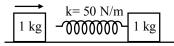
- $(1) 5(\hat{i} + \hat{i}) \text{ms}^{-1}$
- $(2) 5(\hat{i} \hat{j}) \text{ms}^{-1}$
- $(3) 5(-\hat{i} + \hat{j}) \text{ms}^{-1}$ $(4) 5(\hat{i} + \hat{j}) \text{ms}^{-1}$
- Q.17 A body starting from rest and has uniform acceleration 8 m/s². The distance travelled by it in 5th second will be -
 - (1) 36m
- (2) 40m
- (3) 100m
- (4) 200m
- A wire has a mass 0.3 ± 0.003 g, radius 0.5 ± 0.005 0.18 mm and length 6 ± 0.06 cm. The maximum percentage error in the measurement of density is:
 - (1) 1
- (2) 2
- (3) 3
- (4)4
- Two vectors \overrightarrow{A} and \overrightarrow{B} are such that $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$ 0.19 and $C^2 = A^2 + B^2$. Then -
 - (1) $\stackrel{\rightarrow}{A}$ is parallel to $\stackrel{\rightarrow}{B}$
 - (2) $\stackrel{\rightarrow}{A}$ is antiparallel to $\stackrel{\rightarrow}{B}$
 - \vec{A} is perpendicular to \vec{B}
 - (4) A and B have the same magnitude
- If the work done W is represented by the Q.20formula KW = M, where M is the mass the dimension of K is:
 - (1) $M^0L^{-1}T^2$
- (2) $L^{-2}T^2$
- $(3) L^{-2}T^{-2}$
- (4) L^2T^2

- एक कण धनात्मक x-अक्ष के अनुदिश 5 ms⁻¹ की चाल 0.16 से गतिशील है यह अचानक अपनी दिशा धनात्मक y-अक्ष के अनुदिश समान चाल से बदल लेता है। कण के वेग में परिवर्तन Λv है -
 - $(1) 5(\hat{i} + \hat{i}) \text{ms}^{-1}$
- $(2) 5(\hat{i} \hat{j}) \text{ms}^{-1}$
- $(3) 5(-\hat{i} + \hat{j}) \text{ms}^{-1}$ $(4) 5(\hat{i} + \hat{j}) \text{ms}^{-1}$
- एक वस्त् विराम से आरम्भ होती है तथा 8 m/s² का 0.17 एकसमान त्वरण रखती है। इसके द्वारा 5^{वं} सेकण्ड में तय की गई दूरी होगी-
 - (1) 36m
- (2) 40m
- (3) 100m
- (4) 200m
- एक तार का द्रव्यमान 0.3 ± 0.003 g, त्रिज्या 0.5 ± 0.005 Q.18 mm तथा लम्बाई $6 \pm 0.06cm$ है तार के घनत्व की माप में अधिकतम प्रतिशत त्रृटि है :
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- दो सिंदश $\stackrel{\rightarrow}{A}$ तथा $\stackrel{\rightarrow}{B}$ इस प्रकार हैं कि $\stackrel{\rightarrow}{C}=\stackrel{\rightarrow}{A}+\stackrel{\rightarrow}{B}$ 0.19 और $C^2 = A^2 + B^2$ तब -
 - $(1) \stackrel{\rightarrow}{A} \stackrel{\rightarrow}{B} \stackrel{\rightarrow}{a}$ समानान्तर है
 - (2) \overrightarrow{A} , \overrightarrow{B} \overrightarrow{a} \overrightarrow{B} \overrightarrow{B} \overrightarrow{B}
 - (3) A B के लम्बवत है
 - (4) \overrightarrow{A} तथा \overrightarrow{B} के परिमाण समान है
- यदि किये गये कार्य W को सूत्र KW = M द्वारा व्यक्त **O.20** किया जाये, जहाँ M द्रव्यमान हो, तो K की विमा है:
 - (1) $M^0L^{-1}T^2$
- (2) $L^{-2}T^2$
- (3) $L^{-2}T^{-2}$
- (4) L^2T^2

Section-II: This section contains 5 questions (Q.21 to 25). +4 marks will be given for each **correct answer** and -1 mark for each wrong answer. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 6.25, 7.00, -0.33, -.30, 30.27, -127.30).

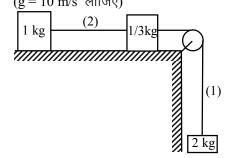

Q.21 Each of the blocks shown in figure has mass 1 kg. The rear block moves with a speed of 2 m/s towards the front block kept at rest. The spring attached to the front block is light and has a spring constant 50 N/m. The maximum compression of the spring is given by $\frac{X}{10}$ m, then find X.

Q.22 A light, rigid rod 1.00 m in length joins two particles, with masses 4.00 kg and 3.00 kg, at its ends. The combination rotates in the xy plane about a pivot through the center of the rod. The angular momentum of the system about the origin when the speed of each particle is 5.00 m/s. is $35/n kg m^2 s^{-1}$. Find n.



Q.23 Find the tension (in N)in string 1. All the surfaces are frictionless. Strings are light and frictionless. (take $g = 10 \text{ m/s}^2$)

खण्ड-II: इस खण्ड में 5 (Q.21 से 25) प्रश्न हैं। प्रत्येक सही उत्तर के लिए +4 अंक दिये जायेंगे तथा प्रत्येक गलत उत्तर के लिए 1 अंक घटाया जायेगा। प्रत्येक प्रश्न के उत्तर के लिए सही आंकिक मान (दशमलव रूप में, दो स्थानों तक पूर्णांकित करके दीजिए, उदाहरण 6.25, 7.00, -0.33, -.30, 30.27, -127.30).


Q.21 चित्र में दर्शाए गए प्रत्येक ब्लॉक का द्रव्यमान $1 \text{ kg } \aleph 1$ पश्च ब्लॉक 2 m/s की चाल के साथ विराम पर रखे हुए अग्र ब्लॉक की ओर गित करता $\aleph 1$ अग्र ब्लॉक से जुड़ी हुई स्प्रिंग हल्की $\aleph 1$ तथा स्प्रिंग नियतांक N 10 स्प्रंग का अधिकतम सिम्पड़न N 11 N 12 N 13 N 14 हो, तब N 15 ज्ञात कीजिए।

Q.22 एक हल्की दृढ़ छड़ जिसकी लम्बाई 1.00 m है, के सिरों पर 4.00 kg तथा 3.00 kg द्रव्यमानों के दो कण जुड़े हुये है। निकाय xy तल में छड़ के केन्द्र के परितः एक कील (pivot) के सापेक्ष घूमता है। निकाय का मूल बिन्दु के सापेक्ष कोणीय संवेग $35/n \text{ kg } m^2 s^{-1}$ है, जब प्रत्येक कण की चाल 5.00 m/s है। n ज्ञात करें।

Q.23 डोरी 1 में तनाव (N में)ज्ञात कीजिए। सभी सतह घर्षणरहित है डोरिया हल्की तथा घर्षणरहित है। $(g=10 \text{ m/s}^2\text{ लीजिए})$

Space for rough work

- Q.24 A ball is projected from the origin. The x and y coordinates of its displacement are given by x = 3t and $y = 4t 5t^2$. Find the velocity of projection (in m/sec).
- Q.25 A body starts moving from origin at t = 0 with a velocity of $5\hat{i}$ in x-y plane under the action of force producing an acceleration of $(3\hat{i} + 2\hat{j})$ m/s², then y-co-ordinate in meters of body is $(9 \times n)$ when x-co-ordinate is 84 m. Find the value of n.
- **Q.24** एक गेंद को मूलिबन्दु से प्रक्षेपित किया गया है। इसके विस्थापन के x तथा y निर्देशांक x=3t तथा $y=4t-5t^2$ द्वारा दिये जाते है। प्रक्षेप्य का वेग (m/\sec में) ज्ञात कीजिए।
- Q.25 एक वस्तु t=0 पर मूल बिन्दु से x-y तल में $5\hat{i}$ के वेग के साथ एक बल की क्रिया के अन्तर्गत उत्पन्न त्वरण $(3\hat{i} + 2\hat{j}) \text{ m/s}^2 \hat{\sigma} \text{ साथ गतिशील हो, तब वस्तु का y-निर्देशांक मीटर में <math>(9 \times n)$ है। जब x-निर्देशांक 84 m है। n का मान ज्ञात कीजिए।

CHEMISTRY

Section-I: Questions 26 to 45 are multiple choice questions. Each question has four choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct. Mark your response in OMR sheet against the question number of that question. +4 marks will be given for each correct answer and -1 mark for each wrong answer.

- **Q.26** Among LiCl, BeCl₂, BCl₃ and CCl₄, the covalent bond character follows the order-
 - (1) LiCl \leq BeCl₂ \geq BCl₃ \geq CCl₄
 - (2) LiCl > BeCl₂ < BCl₃ < CCl₄
 - (3) $LiCl \le BeCl_2 \le BCl_3 \le CCl_4$
 - (4) $LiCl > BeCl_2 > BCl_3 > CCl_4$
- Q.27 What is the number of lone pairs present at Xe in XeO_2F_2 ?
 - (1) 1
- (2) 2
- (3)3
- (4) 4
- Q.28 Which one of the following complete its octet.
 - (1) $BeCl_2(g)$
- (2) BeCl₂(s)
- (3) BCl₃
- (4) AlCl₃
- Q.29 Select incorrect order -
 - (1) $H_2O > H_2S > H_2Se > H_2Te$ (order of bond angle)
 - (2) O > S > Se > Te (order of catenation)
 - (3) $Cl_2 > Br_2 > F_2 > I_2$ (order of bond energy)
 - (4) 2s-2s < 2s-2p < 2p-2p (order of extent of overlapping)
- **Q.30** Which of the following has $p\pi d\pi$ bonding?
 - (1) NO_3^-
- (2) SO_3^{2-}
- (3) BO_3^{3-}
- (4) CO_2^{2-}
- Q.31 Correct order of ionization potential of N, P, O, S is -
 - (1) N > P > O > S
- (2) N > O > S > P
- (3) P > S > N > O
- (4) N > O > P > S

- खण्ड-I: प्रश्न 26 से 45 तक बहुविकल्पी प्रश्न हैं। प्रत्येक प्रश्न के चार विकल्प (1), (2), (3) तथा (4) हैं, जिनमें से केवल एक विकल्प सही है। OMR शीट में प्रश्न की प्रश्न संख्या के समक्ष अपना उत्तर अंकित कीजिये। प्रत्येक सही उत्तर के लिए +4 अंक दिये जायेंगे व प्रत्येक गलत उत्तर के लिए 1 अंक घटाया जायेगा।
- **Q.26** LiCl, BeCl₂, BCl₃ और CCl₄ के मध्य सहसयोंजक बंध लक्षणों का क्रम है -
 - (1) LiCl \leq BeCl₂ \geq BCl₃ \geq CCl₄
 - (2) $LiCl > BeCl_2 < BCl_3 < CCl_4$
 - (3) $LiCl \le BeCl_2 \le BCl_3 \le CCl_4$
 - (4) $LiCl > BeCl_2 > BCl_3 > CCl_4$
- Q.27 XeO_2F_2 में Xe पर उपस्थित एकाकी युग्मो की संख्या $\frac{1}{8}$ -
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- Q.28 निम्न में से किसका अष्टक पूर्ण है।
 - (1) $BeCl_2(g)$
- (2) BeCl₂(s)
- (3) BCl₃
- (4) AlCl₃
- Q.29 गलत क्रम का चयन कीजिए -
 - (1) H₂O > H₂S > H₂Se > H₂Te (बंध कोण का क्रम)
 - (2) O > S > Se > Te (श्रृंखलन का क्रम)
 - (3) Cl₂ > Br₂ > F₂ > I₂ (ৰ্ঘ কৰ্জা কা ক্লम)
 - (4) 2s-2s < 2s-2p < 2p-2p (अतिव्यापन की मात्रा का क्रम)
- **Q.30** निम्न में कौनसा $p\pi d\pi$ बंध रखता है ?
 - (1) NO_3^-
- (2) SO_3^{2-}
- (3) BO_3^{3-}
- (4) CO_3^{2-}
- Q.31 N, P, O, S के आयनन विभव का सही क्रम है -
 - (1) N > P > O > S
- (2) N > O > S > P
- (3) P > S > N > O
- (4) N > O > P > S

Q.32	The first ionization energy is smallest for the atom with electronic configuration: (1) ns ² np ³ (2) ns ² np ⁴ (3) ns ² np ⁵ (4) ns ² np ⁶	Q.32	निम्न में से किस इलेक्ट्रॉनिक विन्यास वाले परमाणु क प्रथम आयनन ऊर्जा न्यूनतम है : (1) ns ² np ³ (2) ns ² np ⁴ (3) ns ² np ⁵ (4) ns ² np ⁶
Q.33	 In which of the following arrangements, the order is not according to the property indicated against it? (1) Al³⁺ < Mg²⁺ < Na⁺ < F⁻ increasing ionic size (2) B < C < N < O increasing first ionisation enthalpy (3) I < Br < F < Cl increasing electron gain enthalpy (with negative sign) (4) Li < Na < K < Rb increasing metallic radius 	Q.33	निम्न में से कौनसी व्यवस्था उनके समक्ष प्रदर्शित गुणे के अनुसार नहीं है ? (1) $Al^{3+} < Mg^{2+} < Na^+ < F^-$ बढ़ता आयनिक आकार (2) $B < C < N < O$ बढ़ती प्रथम आयनन एन्थैल्पी (3) $I < Br < F < Cl$ बढ़ती इलेक्ट्रॉन ग्रहण एन्थैल्पी (ऋणात्मक चिन्ह युक्त) (4) $Li < Na < K < Rb$ बढ़ती धात्विक त्रिज्या
Q.34	 Which of the following statements is incorrect? (1) Cesium is the most electropositive element while F is the most electronegative element (2) Cl has the highest –ve electron gain enthalpy out of all the elements (3) Electron gain enthalpy of N as well as that of noble gases is positive (4) In any period, the atomic radius of the noble gas is lowest 	Q.34	निम्न में से कौनसा कथन गलत है ? (1) सीजियम सर्वाधिक विद्युतधनी तत्व है जबिक I सर्वाधिक विद्युतऋणी तत्व है (2) सभी तत्वों में Cl की इलेक्ट्रॉन ग्रहण एन्थैर्ल्य सर्वाधिक है (3) N तथा नोबल गैसों की इलेक्ट्रॉन ग्रहण एन्थैर्ल्य धनात्मक होती है (4) किसी भी आवर्त में, नोबल गैस की परमाणु त्रिज्य न्यूनतम होती है
Q.35	The atomic weight of two elements A & B are 40 and 80 respectively. If x g of A contain y mole. The how many atoms are present in 2x g of B: (1) $\frac{y}{2}$ (2) $\frac{y}{4}$ (3) y (4) 2y	Q.35	दो तत्व A एवं B का परमाणु भार क्रमशः 40 एवं 80 है यदि A के x g में y मोल उपस्थित है तो B के $2x$ g में कितने परमाणु उपस्थित होगे : $(1) \frac{y}{2} \qquad (2) \frac{y}{4} \qquad (3) y \qquad (4) 2y$

volume occupied by one molecule of water is approximately -

If the density of water is 1 g cm⁻³ then the

 $(1) 18 \text{ cm}^3$

Q.36

(2) 22400 cm³

(3) $6.02 \times 10^{-23} \text{ cm}^3$

(4) $3.0 \times 10^{-23} \text{ cm}^3$

- गी

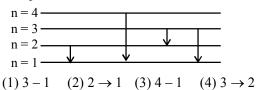
- गी
- ग

Q.36 यदि जल का घनत्व 1 g cm^{-3} है तब जल के एक अणु द्वारा घेरा गया आयतन लगभग है -

 $(1) 18 \text{ cm}^3$

(2) 22400 cm³

(3) $6.02 \times 10^{-23} \text{ cm}^3$


(4) $3.0 \times 10^{-23} \text{ cm}^3$

Space for rough work

A compound possesses 8 % sulphur by mass. Q.37 The least molecular mass is -

(1)200

- (2)400
- (3) 155
- (4)355
- Q.38 Suppose that a hypothetical H-like atom gives a red ,Green, blue & violet line spectrum. Which transition according to figure would give off the red spectral line.

Q.39 If the radius of first Bohr orbitr of H atom is x then de-broglie wavelength of electron in 3rd orbit nearly

(1) $2\pi x$

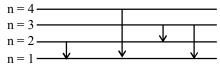
- (2) $6\pi x$
- (3) 9x
- (4) $\frac{x}{3}$
- 0.40 If λ_0 is the threshold wavelength for photoelectric emission, λ the wavelength of light falling on the surface of a metal and m the mass of the electron, then the velocity of ejected electron is given by -

$$(1) \left[\frac{2h}{m} (\lambda_0 - \lambda) \right]^{1/2}$$

$$(1) \left\lceil \frac{2h}{m} (\lambda_0 - \lambda) \right\rceil^{1/2} \qquad (2) \left\lceil \frac{2hc}{m} (\lambda_0 - \lambda) \right\rceil^{1/2}$$

(3)
$$\left[\frac{2hc}{m} \left(\frac{\lambda_0 - \lambda}{\lambda_0 \lambda} \right) \right]^{1/2}$$
 (4) $\left[\frac{2h}{m} \left(\frac{1}{\lambda_0} - \frac{1}{\lambda} \right) \right]^{1/2}$

- Q.41 The uncertainties in the velocities of two particles, A and B are 0.05 and 0.02ms⁻¹, respectively. The mass of B is five times to that of the mass of A. What is the ratio of


uncertainties $\left(\frac{\Delta x_A}{\Delta x_B}\right)$ in their positions

- (1) 2
- (2) 0.25
- (3)4
- (4) 1

एक यौगिक में भार का 8% सल्फर उपस्थित है। उसका Q.37 न्यनतम अणुभार है -

(1) 200

- (2)400
- (3) 155
- (4) 355
- कल्पना कीजिए कि एक काल्पनिक H-जैसा परमाणु लाल, Q.38 हरा, नीला तथा बेंगनी रेखीय स्पैक्ट्रम देता है। चित्रानुसार कौनसा संक्रमण (Jump) लाल रेखीय स्पैक्ट्रम देगी

(1) 3 - 1 $(2) 2 \rightarrow 1$ (3) 4 - 1 $(4) 3 \rightarrow 2$

- यदि हाइड्रोजन परमाणु की प्रथम बोर कक्षा की त्रिज्या xQ.39 है तो तृतीय कक्षा में इलेक्ट्रॉन की डी-ब्रोग्ली तरंगदैर्ध्य होगी

(1) $2\pi x$

- (2) $6\pi x$ (3) 9x
- $(4) \frac{x}{2}$
- यदि λ_0 प्रकाश विद्युत उत्सर्जन के लिए देहली तरंगदैर्ध्य **O.40** है, λ एक धातु के पुष्ठ पर गिराए गए प्रकाश की तरंगदैर्ध्य है तथा m इलेक्ट्रॉन का द्रव्यमान है, तब मुक्त इलेक्ट्रॉन का वेग निम्न द्वारा दिया जाता हैं -

$$(1)\left[\frac{2h}{m}(\lambda_0-\lambda)\right]^{1/2} \quad (2)\left[\frac{2hc}{m}(\lambda_0-\lambda)\right]^{1/2}$$

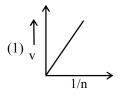
$$(3) \left[\frac{2hc}{m} \left(\frac{\lambda_0 - \lambda}{\lambda_0 \lambda} \right) \right]^{1/2} (4) \left[\frac{2h}{m} \left(\frac{1}{\lambda_0} - \frac{1}{\lambda} \right) \right]^{1/2}$$

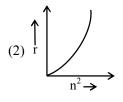
दो कण A व B के वेगों में अनिश्चितता क्रमशः 0.05 व **Q.41** 0.02ms⁻¹ है। B का द्रव्यमान, A के द्रव्यमान का पांच गुना है। इनकी स्थितियों में अनिश्चितताओं $\left(\frac{\Delta x_A}{\Delta x_B}\right)$ का

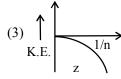
अनुपात क्या होगा

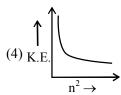
- (1) 2
- (2) 0.25
- (3)4
- (4) 1

Space for rough work


Q.42 Five valence electrons of ₁₅P are labelled as

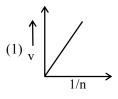

AB 3s X Y Z

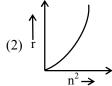

If the spin quantum of B and Z is $+\frac{1}{2}$, the group of electrons with three of the quantum number same is

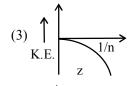

- (1) AB, XYZ, AZ
- (2) ABY
- (3) XYZ, AZ
- (4) AB, XYZ
- **Q.43** Select the correct option :

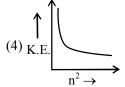
if v = velocity of electron in Bohr's orbit
 r = radius of electron in Bohr's orbit
 P.E. = potential energy of electron in Bohr's orbit
 K.E. = K.E. of electron in Bohr's orbit -

Q.42 15P के पांच संयोजी इलेक्ट्रॉन निम्न प्रकार नामांकित है


AB 3s


यदि B व Z का चक्रण क्वाण्टम $+\frac{1}{2}$ है, तो तीन समान क्वाण्टम संख्या युक्त इलेक्ट्रॉनों का समूह है


- (1) AB, XYZ, AZ
- (2) ABY
- (3) XYZ, AZ
- (4) AB, XYZ
- Q.43 सही विकल्प का चयन कीजिये :


जहाँ v =बोहर कक्षा में इलेक्ट्रॉन का वेग r =बोहर कक्षा में इलेक्ट्रॉन की त्रिज्या P.E. =बोहर कक्षा में इलेक्ट्रॉन की स्थितिज ऊर्जा

K.E. = बोहर कक्षा में इलेक्ट्रॉन की गतिज ऊर्जा-

In the dissociation of PCl₅ as: Q.44

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

If the degree of dissociation is α at equilibrium pressure P, then equilibrium constant for the reaction is:

(1)
$$K_p = \frac{\alpha^2}{1 - \alpha^2 P}$$
 (2) $K_p = \frac{\alpha^2 P^2}{1 - \alpha^2}$

$$(2) K_p = \frac{\alpha^2 P^2}{1 - \alpha^2}$$

(3)
$$K_p = \frac{\alpha P^2}{1 - \alpha^2}$$
 (4) $\frac{\alpha^2 P}{1 - \alpha^2}$

$$(4) \frac{\alpha^2 P}{1 - \alpha^2}$$

Which one is not an example of redox reaction? 0.45

(1)
$$Cl_2 + 2H_2O + SO_2 \longrightarrow 4H^+ + SO_4^{2-} + 2Cl^-$$

(2)
$$Cu^{2+} + Zn \longrightarrow Zn^{2+} + Cu$$

(3)
$$2H_2 + O_2 \longrightarrow 2H_2O$$

(4)
$$HCl + H_2O \longrightarrow H_3O^+ + Cl^-$$

Section-II: This section contains 5 questions (Q.46 to 50). +4 marks will be given for each correct answer and -1 mark for each wrong answer. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 6.25, 7.00, -0.33, -.30, 30.27, -127.30).

- **O.46** The number of σ bonds in P₄O₁₀ is x then x/2?
- 0.47 How many compounds among following have $p\pi$ -d π bonding

$$\begin{array}{ccc} N(CH_3)_3 & N(SiH_3)_3 & SiF_4 \\ {}_{(II)} & {}_{(III)} & {}_{(III)} \end{array}$$

- (IV) H₂SO₄ (V) SiCl₄ (VI) XeO₄
- Q.48 Given successive I.E. of an element X in kJ/mol. $IE_1 = 300$, $IE_2 = 450$, $IE_3 = 3000$, then the electrovalency of X is.

PCl₅ का वियोजन निम्न रूप में होता है : **O.44**

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

यदि साम्य दाब P पर वियोजन की मात्रा α हो. तो अभिक्रिया के लिये साम्य नियतांक होगा:

(1)
$$K_p = \frac{\alpha^2}{1 - \alpha^2 P}$$
 (2) $K_p = \frac{\alpha^2 P^2}{1 - \alpha^2}$

$$(2) K_p = \frac{\alpha^2 P^2}{1 - \alpha^2}$$

(3)
$$K_p = \frac{\alpha P^2}{1 - \alpha^2}$$
 (4) $\frac{\alpha^2 P}{1 - \alpha^2}$

$$(4) \frac{\alpha^2 P}{1 - \alpha^2}$$

निम्न में से कौन रेडॉक्स अभिक्रिया का उदाहरण नहीं है? Q.45

(1)
$$Cl_2+2H_2O + SO_2 \longrightarrow 4H^+ + SO_4^{2-} + 2Cl^-$$

(2)
$$Cu^{2+} + Zn \longrightarrow Zn^{2+} + Cu$$

(3)
$$2H_2 + O_2 \longrightarrow 2H_2O$$

(4)
$$HCl + H_2O \longrightarrow H_3O^+ + Cl^-$$

खण्ड-II : इस खण्ड में 5 (O.46 से 50) प्रश्न हैं। प्रत्येक सही उत्तर के लिए +4 अंक दिये जायेंगे तथा प्रत्येक गलत उत्तर के लिए 1 अंक घटाया जायेगा। प्रत्येक प्रश्न के उत्तर के लिए सही आंकिक मान (दशमलव रूप में, स्थानों तक पुर्णांकित करके दीजिए, उदाहरण 6.25, 7.00, -0.33, -.30, 30.27, -127.30).

- P_4O_{10} में. σ बंधों की संख्या x है. तो x/2 ज्ञात कीजिए? 0.46
- निम्न में से कितनों में ρπ-dπ बंन्ध उपस्थित है। **O.47**

$$\begin{array}{ccc} N(CH_3)_3 & N(SiH_3)_3 & SiF_4 \\ {}_{(I)} & {}_{(II)} & {}_{(III)} \end{array}$$

एक तत्व X की क्रमागत I.E., kJ/mol. में $IE_1 = 300$, Q.48 $IE_2 = 450$, $IE_3 = 3000$ दी गई है, तो X की विद्युत संयोजकता होती है।

Space for rough work

- **Q.49** 4 mole each of SO_2 and O_2 gases are allowed to react to form SO_3 in a closed vessel. At equilibrium, 25% of O_2 is used up. The total number of moles of all the gases at equilibrium is.
- Q.50 Consider the reaction $AB_{2(g)} \rightleftharpoons AB_g + B_{(g)}$. It the initial pressure of AB_2 is 100 torr and equilibrium pressure is 120 torr. The equilibrium constant Kp in terms of torr is.
- **Q.49** एक बंद पात्र में SO_2 तथा O_2 गैसों के प्रत्येक के 4 मोल क्रिया करके SO_3 बनाते है। साम्य पर O_2 के 25% प्रयुक्त होते है। साम्य पर सभी गैसों के मोलों की कुल संख्या क्या होगी।
- **Q.50** अभिक्रिया $AB_{2(g)} \Longrightarrow AB_g + B_{(g)}$ पर विचार कीजिए। इसमें AB_2 का प्रारम्भिक दाब 100 torr तथा साम्य दाब 120 torr है। torr के पदों में साम्य स्थिरांक Kp का मान होगा।

MATHEMATICS

Section-I: Questions 51 to 70 are multiple choice questions. Each question has four choices (1), (2), (3) and (4), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +4 marks will be given for each correct answer and -1 mark for each wrong answer.

- Q.51 If x is real, then the maximum and minimum values of the expression $\frac{x^2 3x + 4}{x^2 + 3x + 4}$ will be
 - (1) 2, 1
- (2) 5. 1/5
- (3) 7, 1/7
- (4) none of these
- **Q.52** If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha 3$, $\beta^2 = 5\beta 3$, then the equation whose roots are α/β and β/α is-
 - $(1) x^2 5x 3 = 0$
 - (2) $3x^2 + 12x + 3 = 0$
 - (3) $3x^2 19x + 3 = 0$
 - (4) None of these
- Q.53 If α , β , γ be the roots of the equation $x(1+x^2) + x^2(6+x) + 2 = 0,$ then the value of $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ is -
 - (1) -3
- (2) $\frac{1}{2}$
- $(3) \frac{1}{2}$
- (4) none
- Q.54 If $U = \{x : x^5 6x^4 + 11x^3 6x^2 = 0\}$, $A = \{x : x^2 - 5x + 6 = 0\}$ and $B = \{x : x^2 - 3x + 2 = 0\}$ what is $(A \cap B)'$ equal to ?
 - $(1) \{1, 3\}$
- (2) {1, 2, 3}
- $(3) \{0, 1, 3\}$
- $(4) \{0, 1, 2, 3\}$

- खण्ड-I: प्रश्न 51 से 70 तक बहुविकल्पी प्रश्न हैं। प्रत्येक प्रश्न के चार विकल्प (1), (2), (3) तथा (4) हैं, जिनमें से केवल एक विकल्प सही है। OMR शीट में प्रश्न की प्रश्न संख्या के समक्ष अपना उत्तर अंकित कीजिये। प्रत्येक सही उत्तर के लिए +4 अंक दिये जायेंगे व प्रत्येक गलत उत्तर के लिए 1 अंक घटाया जायेगा।
- **Q.51** यदि x वास्तविक है, तो व्यंजक $\frac{x^2 3x + 4}{x^2 + 3x + 4}$ के अधिकतम व न्यूनतम मान होंगे -
 - (1) 2, 1
- (2) 5, 1/5
- (3) 7, 1/7
- (4) इनमें से कोई नहीं
- **Q.52** यदि $\alpha \neq \beta$ किन्तु $\alpha^2 = 5\alpha 3$, $\beta^2 = 5\beta 3$, तब वह समीकरण जिसके मूल α/β तथा β/α है, होगी—
 - $(1) x^2 5x 3 = 0$
 - (2) $3x^2 + 12x + 3 = 0$
 - (3) $3x^2 19x + 3 = 0$
 - (4) इनमें से कोई नहीं
- **Q.53** यदि α, β, γ समीकरण $x(1 + x^2) + x^2(6 + x) + 2 = 0$ के मूल है, तब $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ का मान है -
 - (1) -3
- (2) $\frac{1}{2}$
- $(3) \frac{1}{2}$
- (4) कोई नहीं
- **Q.54** यदि $U = \{x : x^5 6x^4 + 11x^3 6x^2 = 0\},$ $A = \{x : x^2 5x + 6 = 0\} \text{ तथा } B = \{x : x^2 3x + 2 = 0\}$ तब $(A \cap B)'$ के बराबर क्या है ?
 - $(1) \{1, 3\}$
- (2) {1, 2, 3}
- $(3) \{0, 1, 3\}$
- (4) {0, 1, 2, 3}

- Q.55 In a town of 10000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C, 5% buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all of three newspapers, then the number of families which buy A only, is -
 - (1) 4400 (2) 3300 (3) 2000 (4) 500
- Q.56 The letters of the word "RADHIKA" are permuted and all permutations are arranged in alphabetical order as in dictionary. The number of words that appears before the word "RADHIKA" is-
 - (1) 2193 (2) 2195 (3) 2191 (4) 2192
- Q.57 The greatest possible number of points of intersection of 8 straight lines and 4 circles is
 - (1) 32 (2) 64 (3) 76 (4) None
- Q.58 A father with 8 children takes 3 at a time to the Zoological Gardens, as often as he can without taking the same 3 children together more than once. The number of times he will go to the garden is:
 - (1) 336 (2) 112 (3) 56 (4) None
- **Q.59** First term of 11^{th} group in the groups (1), (2, 3, 4), (5, 6, 7, 8, 9)... is -
 - (1) 89 (2) 97 (3) 101 (4) 123
- Q.60 The coeff. of x^{49} in the product $(x-1) \cdot (x-3) \cdot (x-5) \dots (x-99)$ is $(1) -99^2$ (2) 1 (3) -2500 (4) None

- Q.55 10000 परिवार के एक कस्बे में यह पाया गया की 40% परिवार A न्यूज पेपर खरीदते है, 20% परिवार B न्यूज पेपर खरीदते है तथा 10% परिवार C न्यूज पेपर खरीदते है, 5% न्यूज पेपर A तथा B खरीदते है तथा 3% न्यूज पेपर B तथा C खरीदते है तथा 4% न्यूज पेपर A तथा C खरीदते है। यदि 2% परिवार सभी तीन न्यूज पेपर खरीदते है तब परिवारों की संख्या जो केवल न्यूज पेपर A खरीदती है, है -
 - (1) 4400 (2) 3300 (3) 2000 (4) 500
- Q.56 शब्द "RADHIKA" के अक्षरों को क्रमचियत कर सभी क्रमचयों को शब्दकोश के अनुसार वर्णमाला क्रम में व्यवस्थित किया जाता है, तो शब्द "RADHIKA" से पहले आने वाले शब्दों की संख्या होगी -
 - (1) 2193 (2) 2195 (3) 2191 (4) 2192
- Q.57 8 सरल रेखाओं तथा 4 वृत्तो के प्रतिच्छेदन बिन्दुओं की महत्तम संभावित संख्या है -
 - (1) 32 (2) 64 (3) 76 (4) कोई नहीं
- Q.58 एक पिता 8 बच्चों में से 3 बच्चों को एक बार में एक साथ लेकर पशु उद्यान इस प्रकार जाता है कि 3 समान बच्चे एक साथ एक से अधिक बार नहीं जा सकते, तब वह कितनी बार उद्यान जाएगा:
 - (1) 336 (2) 112 (3) 56 (4) कोई नहीं
- **Q.59** समूह (1), (2, 3, 4), (5, 6, 7, 8, 9)... में 11वें समूह का प्रथम पद है -
 - (1) 89 (2) 97 (3) 101 (4) 123
- **Q.60** गुणनफल $(x-1) \cdot (x-3) \cdot (x-5)$ (x-99) में x^{49} का गुणांक है -
 - (1) -992 (2) 1 (3) -2500 (4) कोई नहीं

Space for rough work

- Q.61 If x, 2x + 2, 3x + 3 are in G.P., then the fourth term is
 - (1)27
- (2) 27
- (3) 13.5
- (4) 13.5
- Q.62 The smallest positive x satisfying the equation $\log_{\cos x} \sin x + \log_{\sin x} \cos x = 2$ is
 - (1) $\pi/2$
- (2) $\pi/3$
- (3) $\pi/4$
- (4) $\pi/6$
- Q.63 sin5°sin55°sin65° in equal to-

 - (1) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (2) $\frac{\sqrt{3}-1}{3\sqrt{2}}$

 - (3) $\frac{\sqrt{3}-1}{4\sqrt{2}}$ (4) $\frac{\sqrt{3}-1}{8\sqrt{2}}$
- If $0^{\circ} < \theta < 180^{\circ}$ then 0.64

$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + 2\cos 16\theta}}}}$$
 is equal to-

- (1) $2\cos\frac{\theta}{2}$
- $(2) 2\cos\theta$
- (3) $2\cos\frac{\theta}{4}$
- (4) None of these
- The value of cosec $430^{\circ} + \sqrt{3}$ sec 470° is: Q.65
 - (1) 0
- (2) 1
- (3) -4
- (4)4
- The G.M. of the numbers $3, 3^2, 3^3, \dots, 3^n$ is **Q.66**
 - $(1) 3^{\frac{2}{n}}$
- $(2)3^{\frac{n+1}{2}}$
- (3) $3^{\frac{n}{2}}$
- Q.67 n dice are rolled. The number of possible outcomes in which at least one of the dice shows an even number is 189, then $n^4 =$
 - (1)77
- (2)81
- (3)50
- (4) 181

- यदि x, 2x + 2, 3x + 3 गुणोत्तर श्रेढ़ी में है, तब चौथा Q.61 पद है-
 - (1)27
- (2) 27
- (3) 13.5
- (4) 13.5
- लघुत्तम धनात्मक x जो समीकरण Q.62 $\log_{\cos x} \sin x + \log_{\sin x} \cos x = 2$ को संतुष्ट करता है, है
 - (1) $\pi/2$
- (2) $\pi/3$ (3) $\pi/4$
- (4) $\pi/6$
- sin5°sin55°sin65° में बराबर है-Q.63
 - (1) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (2) $\frac{\sqrt{3}-1}{3\sqrt{2}}$
 - (3) $\frac{\sqrt{3}-1}{4\sqrt{2}}$ (4) $\frac{\sqrt{3}-1}{8\sqrt{2}}$
- Q.64 यदि 0° < θ < 180° तथा

$$\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+2\cos 16\theta}}}}$$
 बराबर है—

- (1) $2\cos\frac{\theta}{2}$
- $(2) 2\cos\theta$
- (3) $2\cos\frac{\theta}{4}$ (4) इनमें से कोई नहीं
- $\csc 430^{\circ} + \sqrt{3} \sec 470^{\circ}$ का मान है : Q.65
- (2) 1
- (3) -4(4) 4
- संख्याओं $3,3^2,3^3.....3^n$ का गुणोत्तर माध्य है **Q.66**

 - $(1) 3^{\frac{2}{n}} \qquad (2) 3^{\frac{n+1}{2}}$
 - (3) $3^{\frac{n}{2}}$
- n पासों को उछाला जाता है, तो उन पर आई संख्याओं 0.67 में से कम से कम एक पासे पर सम संख्या आने की संभावित संख्या 189 हो, तो n⁴ का मान होगा -
 - (1)77
- (2)81
- (3)50
- (4) 181

- Q.68 An automobile driver travels from a plain to a hill station 120 km away at an average speed of 30 km per hour. He then makes the return trip at an average speed of 25 km per hour. He covers another 120 km on the plain at an average speed of 50 km per hour. His average speed over the entire distance of 360 km will be -
 - (1) $\frac{30+25+50}{3}$ km/hour
 - (2) (30, 25, 50)^{1/3} km/hour
 - (3) $\frac{3}{\frac{1}{30} + \frac{1}{25} + \frac{1}{50}}$ km/hour
 - (4) None of these
- **Q.69** Let $x_1, x_2, x_3, ..., x_n$ be n observations such that $\Sigma x_i^2 = 400$ and $\Sigma x_i = 80$. Then a possible value of 'n' among the following-
 - (1) 15
- (2)18
- (3)9
- (4) 12
- Q.70 The mean deviation from mean of the following data 2, 3, 5, 6, 9 is -
 - $(1) \ 3$
- (2) 5
- (3) 2
- (4) 2.2

Section-II: This section contains 5 questions (Q.71 to 75). +4 marks will be given for each **correct answer** and -1 mark for each wrong answer. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 6.25, 7.00, -0.33, -.30, 30.27, -127.30).

Q.71 If expression $ax^4 + bx^3 - x^2 + 2x + 3$ has remainder 4x + 3 when divided by $x^2 + x - 2$ then a + 4b equals

- Q.68 एक गाड़ी चालक धरातल से हिल स्टेशन तक 120 किमी की दूरी 30 किमी/घंटा की औसत चाल से तय करता हैं तथा वापसी यात्रा 25 किमी/घंटा की दर से तय करता हैं। वह धरातल पर अन्य 120 किमी की दूरी औसत चाल 50 किमी/ घंटा से तय करता हैं, तब 360 किमी की सम्पूर्ण यात्रा की औसत चाल हैं -
 - (1) $\frac{30+25+50}{3}$ किमी/घंटा
 - (2) (30, 25, 50)^{1/3} किमी/घंटा
 - (3) $\frac{3}{\frac{1}{30} + \frac{1}{25} + \frac{1}{50}}$ किमी/घंटा
 - (4) इनमें से कोई नहीं
- **Q.69** माना n प्रक्षेण $x_1, x_2, x_3, ..., x_n$ इस प्रकार है कि $\Sigma x_i^2 = 400$ तथा $\Sigma x_i = 80$ है। तब निम्न में से 'n' का संभावित मान है -
 - (1) 15
- (2)18
- (3)9
- (4) 12
- **Q.70** निम्न आँकड़ो का माध्य से माध्य विचलन है 2, 3, 5, 6, 9
 - (1) 3
- (2) 5
- (3) 2
- (4) 2.2

खण्ड-II: इस खण्ड में 5 (Q.71 से 75) प्रश्न हैं। प्रत्येक सही उत्तर के लिए +4 अंक दिये जायेंगे तथा प्रत्येक गलत उत्तर के लिए 1 अंक घटाया जायेगा। प्रत्येक प्रश्न के उत्तर के लिए सही आंकिक मान (दशमलव रूप में, स्थानों तक पूर्णांकित करके दीजिए, उदाहरण 6.25, 7.00, -0.33, -.30, 30.27, -127.30).

Q.71 यदि व्यंजक $ax^4 + bx^3 - x^2 + 2x + 3$ को $x^2 + x - 2$ से विभाजित करने पर शेषफल 4x + 3 बचता है, तो a + 4b का मान है

Q.72 No. of proper divisor of number
$$N = \frac{2^3 \cdot 3^2 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13}{165} \text{ is } -$$

- Q.73 The number of distinct permutations of the letters of the word STATISTICS that begin and end with the letter S is
- Q.74 If the first term of an infinite G.P. is 1 and any term is equal to the sum of all of its succeeding terms then its common ratio is -
- Q.75 For $\forall x \in R$ if range of $3\sin^2 x + 3\sin x \cos x + 7\cos^2 x$ is [a, b] then a + b equals.

- **Q.72** संख्या $N = \frac{2^3.3^2.5^3.7^2.11.13}{165}$ के उचित विभाजकों की संख्या होगी -
- Q.73 शब्द STATISTICS के अक्षरों के विभिन्न क्रमचयों की संख्या जिनकी शुरुआत तथा अन्त S अक्षर से होती है, होगी
- Q.74 यदि एक अनन्त गु.श्रे. का प्रथम पद 1 है तथा कोई भी पद इसके सभी क्रमागत पदों के योग के बराबर है, तो इसका सार्वअनुपात है -
- **Q.75** सभी $x \in R$ के लिए यदि $3\sin^2 x \,+\, 3\sin x \,\cos x \,+\, 7\cos^2 x \,$ का परिसर [a, b] है, तो a + b का मान है।

Time: 3 Hours Maximum Marks: 300

SYLLABUS

भौतिक विज्ञान : अनिवार्य गणित, मात्रक एवं विमा, सदिश, त्रृटि, एक विमिय गति, द्विविमिय गति, प्रक्षेप्य गति, गति से सम्बंधित, वृत्तीय गति,

न्यूटन के गति के नियम, घर्षण, कार्य, शक्ति एवं ऊर्जा, संवेग, द्रव्यमान का केन्द्र, ऊर्जा एवं संवेग का संरक्षण, दृढ पिण्ड

गतिकी, घुर्णन गतिकी

रसायन विज्ञान : परमाण्, संरचना, आवर्त सारणी, रासायनिक बन्ध, रसायन विज्ञान की मूल अवधारणाएं, रेडॉक्स एवं आयतनी अनुमापन,

रासायनिक साम्य

गणित : द्विघात समीकरण, समुच्चय, साख्यिकीय, त्रिकोणमितीय अनुपात एवं सर्वसमिकाऐं, श्रेणी, क्रमचय एवं संचय।

IMPORTANT INSTRUCTIONS

A. सामान्य:

- 1. कृपया प्रत्येक प्रश्न के लिए दिए गए निर्देशों को सावधानीपूर्वक पढ़िये तथा सम्बन्धित विषयों में उत्तर—पुस्तिका पर प्रश्न संख्या के समक्ष सही उत्तर चिन्हित कीजिए।
- 2. उत्तर के लिए. OMR अलग से दी जा रही है।
- 3. परिवीक्षकों द्वारा निर्देश दिये जाने से पूर्व प्रश्न-पत्र पुस्तिका की सील को नहीं खोलें।

B. अंकन पद्धति:

इस प्रश्नपत्र में प्रत्येक विषय में निम्न प्रकार के प्रश्न हैं:-

खण्द- ।

4. बहुविकल्पी प्रकार के प्रश्न जिनमें से केवल एक विकल्प सही हैं। प्रत्येक सही उत्तर के लिए +4 अंक दिए जायेंगें तथा प्रत्येक गलत उत्तर के लिए -1 अंक घटाया जाएगा। प्रश्न का उत्तर न देने पर शून्य अंक दिये जायेंगे।

खण्ड-॥

- 5. गणनात्मक प्रकार के प्रश्न हैं। प्रत्येक सही उत्तर के लिए +4 अंक दिए जाऐंगे तथा प्रत्येक गलत उत्तर के लिए -1 अंक घटाया जाएगा। इस खण्ड में प्रत्येक प्रश्न के उत्तर के संख्यात्मक मान दशमलव अंकन में, दशमलव के द्वितीय स्थान तक पूर्णाक (truncated/rounded-off) दीजिये, उदाहरणतः (6.25, 7.00, -0.33, -.30, 30.27, -127.30)
- 6. उत्तर को स्पष्ट तथा स्वच्छ हस्तलेखा में ही लिखें।

C. OMR की पूर्ति :

- 7. OMR शीट के ब्लॉकों में अपना नाम, अनुक्रमॉक, बैच, कोर्स तथा परीक्षा का केन्द्र भरें तथा गोलों को उपयुक्त रूप से काला करें।
- 8. गोलो को काला करने के लिए केवल HB पेन्सिल या नीले/काले पेन (जेल पेन प्रयोग न करें) का प्रयोग करें।

For example if only 'A' choice is correct then, the correct method for filling the bubbles is :

A B C D
O O

the wrong method for filling the bubble are :

The answer of the questions in wrong or any other manner will be treated as wrong.

PTS/26/PT-1/PCM